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SUPPLEMENTARY METHODS 
 
 
1- Normative approach to the PROBE model 
In this section, we briefly present the optimal statistical approach to the problem of task set 
creation. We then explain how the PROBE model approximates this optimal statistical model. 
 
Optimal statistical model 
The optimal statistical model is based on non-parametric Bayesian inferences creating sets on 
demands and known as Dirichlet Processes [1]. The model involves the following priors: (1) 
the model explicitly tracks hidden states switches between two consecutives trials with a 
binary indicator following a Bernouilli distribution with external volatility τ as parameter, 
where external volatility τ follow a Beta distribution to be inferred;  (2) when a switch is 
inferred between trial t and t+1, the model assumes that given hidden state in trial t, the 
hidden state in trial t+1 follow a Dirichlet process with concentration parameter η: hidden 
states are assumed to re-occur in proportion of previous re-occurrences, whereas a new hidden 
state is instantiated in proportion of η. The model then infers ex-ante reliability Λ(t+1) over 
hidden states, i.e. the distribution of task sets in trial t+1 given past action outcomes and 
priors about task set structures (see below). The model then chooses the most likely correct 
action in response to stimulus st+1 by marginalizing over task sets. As shown by computer 
simulations, the model behavior remains virtually unchanged when alternatively, action 
selection involves two stages: first choosing the most reliable task set then the correct action 
according to this task set. 
 
We implemented this model with priors about task set structures matching the generative 
model of the experimental task: each stimulus was associated with only one correct response 
and positive/negative feedbacks were noisy with white noise independent of hidden states (i.e. 
trials), stimuli, actions and outcomes. Accordingly, the model implementation assumed that 
positive feedbacks for correct and incorrect actions are given with probability p and 1-p, 
respectively, where p follows a Beta distribution inferred from action outcomes. These priors 
were chosen so that the normative model behavior provides the best achievable performance 
in the experimental task in terms of information processing. The priors also correspond to the 
most parsimonious interpretation of instructions given to subjects. With these priors, the 
number of possible task sets becomes finite and equal to 24. We therefore implemented the 
finite version of Dirichlet processes that reduces to the Dirichlet distribution with 
concentration parameter η: whenever a switch of hidden states is inferred, the larger η the 
more the model selects task sets randomly among the 24 possible ones regardless of their 
previous re-occurrences. 
 
In this normative model, the history of task set assignments and creation is systematically 
revised using multiple backward-forward runs whenever in every trial T, a new action 
outcome is observed, so that the model statistical inferences match the memorized history of 
observed external contingencies. We computed the model statistical inferences using Gibbs 
sampling [2]. Gibbs sampling is an offline algorithm that according to every new action 
outcome in trial T, re-samples volatility τ, reward probability p and in a backward fashion, the 
history of inferred hidden states and switches in previous trials t<T.  
 
Computer simulations show that in the first experiment, the optimal model performance 
(=86% of correct responses over both sessions) is virtually reached when forward-backward 
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inferences involve at least ∼25 trials backwards (note that the optimal PROBE model 
performance is 80%). As expected, the optimal model outperforms human subjects in both the 
recurrent and open condition (see Fig. S5). 
 
Computer simulations further show that for reaching human average performances in the first 
experiment (M+/-SE=77% +/- 0.6%), the optimal statistical model needs to involve at least ∼6 
trials backwards in forward-backward inferences. In the open session, consequently, the 
model needs to track and update backwards up to ∼150 pieces of information in every trial 
(∼24 created task-sets x 6 backward trials) for reaching human performances. The optimal 
statistical model thus requires memory capacities that clearly overcome human working-
memory capacities. Accordingly, forward-backward inferences in Dirichlet processes that 
involve an increasing number of task sets have little biological plausibility. 
 
PROBE model approximation 
For the sake of biological plausibility, the PROBE model approximates the statistical optimal 
model in two ways: backward inferences are restricted to task-set creation (the critical non-
parametric component of Dirichlet processes) and forward inferences involve only a limited 
number of concurrent task sets. For that purpose, the PROBE model is based on estimating 
the likelihood that no monitored task sets match the current hidden state in order to infer 
online the opportunity to create new task sets. Estimating this likelihood (i.e. µ0(t), λ0(t), see 
Materials and Methods) then yields to the notion of “absolute” reliability of task sets: 
namely the estimate of likelihood λi(T) that task set i match current hidden state i* 
conditionally upon past observations and critically, not upon the collection of current task-
sets). 
 
In every trial T, consequently, a task set i may appear to be reliable, i.e. more likely reliable 
than unreliable, (λi(T) > 1-λi(T), i.e. λi(T)>0.5), in which case the other task sets appear to be 
unreliable (because reliability signals sum up to 1 over task sets). When such a reliable task 
set exists, it is therefore assigned to trial T for driving behavior. When in trial T, conversely, 
no reliable task set exists, the behavior in trial T is initially driven by the mixture of learned 
behavioral strategies stored in long-term memory that is derived from the optimal statistical 
model (see below). Accordingly, this mixture forms a new, probe actor that is adjusted in 
subsequent trials through learning. 
 
Creating new task-sets then logically increases the number of task sets that are concurrently 
monitored. Biological plausibility further requires that this number remains bound (with 
bound N) and consequently requires “deciding” which task sets to monitor. The PROBE 
model simply assumes that only the last N-1 assigned task sets (i.e. the last N-1 reliable task 
sets) are monitored along with the actor. As a result, a new probe actor may be entirely 
discarded when it still remains unreliable at the time another task set becomes reliable and is 
assigned to drive behavior. 
 
The resulting process corresponds to the notion of hypothesis testing on task set creation, i.e. a 
basic form of backward inference that possibly runs over large series of trials. The process 
ensures that only behavioral strategies that have been reliable and assigned to trials are stored 
in long-term memory. This property ensures that the mixture of behavioral strategies shaping 
new probe actors properly approximates the optimal statistical learning model as explained 
below. In sum, task set assignments to trials are based on forward inferences. However, such 
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assignments are definitive only when they appear to be reliable, so that in the statistical 
optimal model, they would be unlikely to be revised in backward inferences. 
 
 

Task set creation and mixture of behavioral strategies. Probe task sets are created with 
initial selective mapping Mnew(S) (and predictive mapping Mnew(P))  formed from the mixture 
of selective mappings Mk(S) (predictive mappings Mk(P), respectively) stored in long-term 
memory and weighted according to contextual cues Ct:  
 

€ 

Mnew (.) =ηU + (1−η)
F(k Ct )Mk (.)

k
∑

Z
, (Eq. S1) 

 
where U denote uniform mappings and 

€ 

Z = F kCt( )
k
∑  the normalization factor. Indexes k 

runs over all behavioral strategies stored in long-term memory. Parameter η scales 
recollection entropy (

€ 

0 ≤η ≤1). The mixture in (Eq. S1) derives from the statistical optimal 
model based on Dirichlet processes described above. To clarify this point, consider for 
example the formation of new predictive mapping Mnew(P) =  γnew(o,s,a). When this mapping 
is created, it writes as follow: 
 

€ 

γ new (o,s,a) = P(o /s,a,X,C)  
 
where X is event “task set creation” with contextual cues C. Bayesian derivations then show 
that: 

 

€ 

γ new (o,.s,a) = P(o s,a,X,i* = i0)P(i* = i0 X) + [1− P(i* = i0 X)] P(o s,a,X,i* = i)ω(i,C)
i
∑  

(Eq.S2) 

with 

€ 

ω(i,C) =
P(X i* = i)F(i C)
P(X i* = j)F( j C)

j
∑

. In Eq. S2, 

€ 

i, j  denote hidden states that previously 

occurred and therefore correspond to behavioral strategies stored in long-term memory; 
F(i/C) denotes contextual models; i* denotes the actual hidden state when event X occurs; and  
i*=i0 denotes an hidden state that never occurred (no instances in long-term memory). Eq. S2 
is obtained from the model assumption that external contingencies and contextual cues 
depend only upon actual hidden state i* (see Materials and Methods).  Note that: 
 

- P(i*=i0/X) is the probability that an entirely new hidden state occurs, when a task set is 
created. This probability is a parameter named recollection entropy η that corresponds 
to the concentration parameter in Dirichlet processes (see above). P(o/.,X, i*=i0) is the 
associated predictive mapping and is therefore uniform U.  

 
- P(o/s,a,X, i*=i) = P(o/s,a, i*=i)=γi(o,s,a) is the predictive mapping associated with 

hidden state i (X is removed because external contingencies depend only upon actual 
hidden states).  
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- P(X/i*=i) is the probability of task set creation, when actual hidden state is i. Because 
task set creation consists of creating a new instance of behavioral strategy in long-term 
memory, this probability is precisely the proportion of behavioral strategies stored in 
long-term memory and associated with hidden state i. Consequently, we have: 

 

€ 

P(o s,a,X,i* = i
i
∑ )ω(i,C) =

γ k (o,s,a)F(k C)
k
∑

F(k C)
k
∑

 
 

where k runs over all behavioral strategies stored in long-term memory. We then get from 
(Eq. S2) the proposed mixture:  
 

€ 

γ new (o,s,a) =Uη+ (1−η)
γ k (o,s,a)F(k C)

k
∑

F(k C)
k
∑

.  (Eq. S3) 

The same calculus holds for selective mappings. In the present protocol and given the 
approximations inherent to the PROBE model, the proposed mixture is thus the optimal 
shaping of new actors from long-term memory, knowing that long-term memory is not an 
exhaustive representation of external states (open environments). 
 
Note finally that the aim of the paper is not to provide a comprehensive description of long-
term memory retrieval, which in general might include additional temporal factors such as the 
recency and duration of occurrences of external contingencies: as mentioned above, these 
factors are irrelevant in the present experimental paradigm and were ignored to avoid 
unnecessary sophistication. 
 
 
2-Alternative models 
 
MAX model. The MAX model is identical to the PROBE model, except that the assumption 
of hypothesis testing on task set creation is removed. Thus, the most reliable task set is the 
actor, provided that it remains more reliable than random behavior, i.e. 

€ 

λactor (t) > λ0(t)  or 
equivalently, more likely that no task sets match current hidden state. In the converse case, a 
new task set is created to serve as actor with now prior reliability 

€ 

λprior  equal to random 
prediction reliability 

€ 

λ0(t) . This new task set directly updates task set collection, because its 
prior reliability is the largest one. There is therefore no hypothesis testing. Otherwise, the 
MAX model is identical to the PROBE model. The MAX model is equivalent to the basic 
online, forward approximation (one-particule filtering) of Dirichlet process mixtures[3], when 
bound N is infinite and recollection entropy η is 1. 
 
Confirmation bias 

€ 

θ  was defined as follow: 

€ 

λbiased prior = θ ×1+ (1−θ )λprior , because value 0.5 
has no more meaning in this model.  
 
FORGET model.  The FORGET model is similar to the MAX model except that the 
assumption of task set creation is removed. Thus, the collection of task sets is fixed and 
corresponds to monitoring capacity N. As external states are potentially infinite, task set 
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reliability therefore represents relative evidence across distinct behavioral strategies rather 
than external states. Accordingly, only relative estimates of task set reliability are meaningful: 

  

€ 

λi(t) =
1
Zλ
t F i Ct( ) τ ijµ j (t −1)

j=1…N
∑ , i∈ 1,…, N{ } 

  

€ 

µi(t) =
γ i(ot ,st ,at )λi(t)

Zµ
t , i∈ 1,…, N{ } 

where   

€ 

1,…, N{ } denotes task set collection (fixed). This model assumes that this fixed, 
possibly very large collection coding for alternative behavioral strategies is used for driving 
behavior. Accordingly, selective and predictive mappings M associated with task sets are 
assumed to decay with time into uniform mappings whenever they are not chosen as actors: 

€ 

Mt+1 =ϕU + (1−ϕ)Mt , where U denotes uniform mappings and ϕ the decay rate (

€ 

0 ≤ϕ <1). 
Because reliability estimates are relative to each other, the actor is then chosen according to a 
softmax on ex-ante reliability 

€ 

λi(t)  with inverse temperature β’. Otherwise, the FORGET 
model has the same free parameters as the PROBE and MAX model, except that decay rate ϕ 
and inverse temperature β’ replace recollection entropy η and confirmation bias 

€ 

θ , 
respectively. 
 
Because in this model task set reliability therefore represents relative evidence across distinct 
behavioral strategies rather than external states, we properly assumed that in contrast to the 
MAX and PROBE model, learning/updating of selective/predictive mappings operates in all 
task sets i in proportion to ex-post reliability 

€ 

µi(t)  [note that actually, this assumption had no 
influences on model fits, because in the present study, the best fitting FORGET model 
involved large decay rate ϕ (see Results)].  
 
 
Pure reinforcement learning (RL) model. The FORGET, MAX and PROBE models were 
compared to a pure reinforcement learning model including no reliability monitoring. This RL 
model comprises only selective mapping 

€ 

Q(s,a) representing stimulus-response associations 
and in presence of contextual cues, selective mapping 

€ 

Q(s,a,C)  representing stimulus-cue-
response associations. Each selective mapping is learned through the standard temporal 
difference RL rule described above with learning rates αs and αc. In general, behavioral 
policy P(at|st,Ct) then forms a mixture of ε-softmax with inverse temperature β and β’ (and Q-
values normalized over actions): 
 

  

€ 

P at st ,Ct( ) = (1−ε) (1−ω ) expβQ(st ,at )
expβQ(st ,a)

a=1…na

∑
+ω

exp ʹ′ β Q(st ,at ,Ct )
exp ʹ′ β Q(st ,a,Ct )

a=1…na

∑

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

+
ε
na

, 

 
where ω is the mixture rate. In experiment 1 including no contextual cues, mixture rate ω was 
set to 0 and parameter αc, β’ were removed from the fitting: the model thus included only 
three free parameters β, ε, αs. In experiment 2, all parameters were included: β, β’, ε, αs, αc, 
and ω.  
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3-Data analyses 
 
Proportions of responses. In every behavioral session, the first episode was systematically 
factored out from data analyses. Because the mappings between stimuli and correct responses 
used in two successive episodes were fully incongruent, subjects then produced three types of 
responses: (1) correct responses in the ongoing episode (one response to every stimulus); (2) 
perseverative responses corresponding to the correct responses in the preceding episode (one 
response to every stimulus); (3) exploratory responses corresponding to neither correct nor 
perseverative responses (two responses to every stimulus). We report only the proportions of 
correct and exploratory responses, because the proportions of correct, perseverative and 
exploratory responses sum up to 1.  
 
Mutual dependence between successive decisions. The mutual dependence between two 
successive decisions was computed as the (mutual) information I(t,t+1) that the response 
outcome in trial t provide for selecting a correct response in trial t+1: 

€ 

I(t, t +1) = P(at ,at+1)log
P(at ,at+1)
P(at )P(at+1)at+1∈ 0,1{ }

∑
at ∈ 0,1{ }
∑ , 

where at=1 and at=0 denote correct and incorrect responses, respectively. P(.) denotes 
observed frequencies of actual responses in trial t and t+1 over episodes (t=0 refers to episode 
onsets). 
 
Model fitting. Models were simulated using binary inputs for digit stimuli and color cues.  
Stimuli were modeled as binary indicators coding for digits only. Contextual cues were 
modeled as binary indicators coding for either color-digit pairs or colors only (because 
subjects were not informed about the meaning of color cues). The same results were obtained 
in both cases.  
 
For every model, we used three fitting criteria: (1) ordinary least squares (LS) minimizing the 
residual square distance between observed frequencies and predicted probabilities of correct 
responses over sessions. Predicted probabilities were computed in every trial according to the 
preceding responses produced by subjects; (2) log-likelihood (LLH) maximizing the (log-) 
likelihood of observing actual subjects’ responses in every trial given the model and the 
preceding responses produced by subjects; (3) Bayesian information criterion (BIC) altering 
LLHs according to the number of model free parameters. The BIC penalizes models with 
larger number of free parameters. Fittings were performed by combining grid search and 
gradient descents with multiple starting points using the MATLAB optimization toolbox. 
Model fits were compared according to these three fitting criteria. Lower LSs, larger LLHs 
and lower BICs indicate better fits. As shown in Results (Figs. 2 & 8), the PROBE model was 
the best fitting model regardless of fitting criteria.  
 
Statistical analyses. In agreement with standard statistical analyses, we report parametric test 
values (T-tests and F-tests) for subjects’ performances, whenever the number of subjects was 
larger than 20. Otherwise, we report non-parametric test values as mentioned in the text. 
 
For variations of model parameters across groups, we report non-parametric statistical tests as 
mentioned in the text regardless of subjects’ number, because model parameters are bounded, 
sometimes discrete (bounds N) and the underlying distribution may depart from the normal 
distribution. 
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4- Post-tests 
 
Experiment 1. Immediately after the recurrent session, we administered a post-test to 
subjects measuring their ability to retrieve the three mappings between stimuli and correct 
responses. The three stimuli used during the session were shown on the screen within arrays 
representing the four response keys (also shown as positive feedbacks, see above). 6 
combinations were shown to each subject: three showing the three mappings that she/he 
encountered in the recurrent session (i.e. each stimulus was placed on the corresponding 
correct keys) and three showing those encountered by another subject in her/his own recurrent 
session. Subjects had to rate each combination from 0 to 4 as follows: 

 
0: I am certain this combination was not valid during the session 
1: I think this combination was not valid during the session 
2: I don't know whether this combination was valid during the session 
3: I think this combination was valid during the session 
4: I am certain this combination was valid during the session. 

 
We then computed a discrimination score for every subject as the maximal rating of no-
encountered combinations subtracted from the minimal rating of encountered combinations. 
Positive discrimination scores mean that all encountered combinations were rated higher than 
other combinations. 13 subjects exhibited positive discrimination scores and were referred to 
as exploiting subjects. The 9 remaining subjects were referred to as exploring subjects. We 
found no significant correlations between discrimination scores and age, gender or session 
order (all Ps > 0.05). 
 
Experiment 2. As in the first experiment, we administered a post-test to subjects immediately 
after the second behavioral session. The post-test measured subjects' ability to retrieve the 
mapping between stimuli and correct responses as well as associated contextual cues they 
encountered in the session. Because there were many potential combinations mixing 
contextual cues and mappings, we simply asked subjects to write down the mappings and 
associated cues they could remember (without any feedbacks). Similar to the first experiment, 
three groups of subjects were then determined as follows: 
 
Subjects who wrote down the three recurrent mappings encountered in the session formed the 
exploiting group (34 subjects). The remaining ones formed the exploring group (15 subjects). 
Within the exploiting group, those who further wrote down the two contextual cues associated 
with the mappings used in control episodes were referred to as context-exploiting subjects (19 
subjects). The remaining ones were referred to as outcome-exploiting subjects (15 subjects). 
Again, no significant correlations were found between groups and age and gender (all 
Ps>0.05). 
 
 
5. Comments on model fits.  
 
In the first experiment, subjects produced significantly more exploratory responses on trial 5 
following episode onsets than model predictions (see Fig. 3). In trial 5, exploratory responses 
peaked so that on average, subjects had quit the ongoing task-set in the preceding trial. On 
these trials, moreover, correct responses were appropriately predicted. Consequently, the 
discrepancy implies that subjects performed less perseverative responses than the models, so 
that subjects exhibited an inhibition of return bias preventing subjects from reusing the 
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mappings they just quit[see e.g. 4]. This bias was not implemented in the models for 
simplicity. We may implement the bias by penalizing the reliability of task-sets that subjects 
just quit. In the PROBE model, the bias would decrease the weight of the corresponding 
mappings in the mixture used for creating task-sets. The bias would have an observable 
influence on behavior especially when the total number of behavioral strategies stored in 
long-term memory and associated with the same context remains small. This number is the 
lowest in recurrent episodes and exploiting subjects. Consistently, the discrepancy is 
observable only in these cases (see Fig. 6). Note that the effect is not observed in experiment 
2, because contextual cues changed at episode onsets. 
 
In the control experiment including four recurrent action sets (Fig. 4S), subjects performed on 
average as in the open condition, while according to the PROBE model, the monitoring 
capacity was on average equal to three task sets. To understand this point, note first that the 
pseudo-randomization was such that about 50% of episodes associated with one action set 
followed the successive occurrences of the three other action sets. With a monitoring capacity 
limited to three task sets, consequently, the corresponding task set is removed from the 
monitoring buffer at onsets of such episodes, which become equivalent to open episodes. In 
this control experiment, moreover, post-tests revealed that as in Experiment 1, 1/3 of subjects 
were classified as exploring subjects and behaved similarly in recurrent and open episodes. 
Consequently, the overall performance averaged over episodes and subjects shown in Fig. 4S 
appears similar to that found in open episodes from experiment 1. As expected, however, the 
performance of exploiting subjects significantly improved in episodes associated with one 
action set and preceded by the successive occurrences of only one or two other action sets 
compared to those preceded by the successive occurrences of three other action sets (increases 
of correct responses: T=1.9, p<0.06; decreases of exploratory responses: T=2.4, p<0.016). 
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